Quadratics
last $x^{2}+8 x+15=0$
factoring $(x+3)(x+5)=0$

$$
\therefore \quad x=-3 \text { or }-5
$$

Completing

$$
x^{2}+8 x+11=0
$$

the square

$$
\sqrt{x^{2}}
$$

$$
\begin{aligned}
x^{2}+8 x & =-11 \\
x^{2}+8 x+16 & =-11+16 \\
\sqrt{(x+4)^{2}}= & =\sqrt{5} \\
(x+4) & = \pm \sqrt{5} \\
x= & \pm \sqrt{5}-4 \\
& -1.76,-6.23
\end{aligned}
$$

$$
\begin{gathered}
3 x^{2}+8 x-7=0 \\
3 x^{2}+8 x=7 \\
3\left(x^{2}+\frac{8}{3} x+\frac{16}{9}\right)=7 \\
\text { Looks har-b! }
\end{gathered}
$$

Quadratic Formula
The bazooka that "solves" the quadratic impossibility If $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Ex $3 x^{2}+8 x-7=0$

$$
\begin{aligned}
& a=3 \\
& h=8
\end{aligned} \quad x=\frac{-8 \pm \sqrt{8^{2}-4(x)(-)} \leqslant=148}{2}
$$

$$
b=8
$$

$\frac{4+8}{2}=-7 \quad x=\frac{-8 \pm \sqrt{148}}{6}$

$$
x=\frac{-8+\sqrt{18}}{6} \text { oc } \frac{-8-\sqrt{148}}{6}
$$

$$
x=.69 \quad \text { or }-3.36
$$

$$
E x \neq 2
$$

Find the roots

$$
5 x^{2}-10 x-4=0
$$

